4.7 Article

Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays

Journal

PEST MANAGEMENT SCIENCE
Volume 67, Issue 1, Pages 60-69

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.2032

Keywords

biotype; DMI fungicide; powdery mildew; QoI; Q-PCR; resistance

Funding

  1. INRA
  2. Regional Council of Aquitaine

Ask authors/readers for more resources

BACKGROUND: Management of grapevine powdery mildew Erysiphe necator Schw. requires fungicide treatments such as sterol demethylation inhibitors (DMIs) or mitochondrial inhibitors (QoIs). Recently, reduction in the efficacy of DMIs or QoIs was reported in Europe and the United States. The aim of the present study was to develop real-time qPCR tools to detect and quantify several CYP51 gene variants of E. necator: (i) A versus B groups (G37A) and (ii) sensitive versus resistant to sterol demethylase inhibitor fungicides (Y136F). RESULTS: The efficacy of the qPCR tools developed was better than the CAPS method, with a limit of 2 pg for E necator DNA, 0.06 ng for genetic group A and 1.4 ng for the DMI-resistant allele. The detection limits of qPCR protocols (LOD) ranged from 0.72 to 0.85%, and the quantification limits (LOQ) ranged from 2.4 to 2.85% for the two alleles G47A and Y136F respectively. The application of qPCR to field isolates from French vineyards showed the presence of DMI-resistant and/or QoI-resistant alleles in French pathogen populations, linked to genetic group B. CONCLUSION: The real-time PCR assay developed in this study provides a potentially useful tool for efficient quantification of different alleles of interest for fungicide monitoring and for population structure of E. necator. (C) 2010 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available