4.4 Article

Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence

Journal

PEPTIDES
Volume 37, Issue 2, Pages 273-284

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.peptides.2012.07.019

Keywords

Cell-penetrating peptide; Cytotoxicity; Endosomal escape; Hemagglutinin-2; Membrane fusion

Funding

  1. National Institutes of Health [R15EB009530]
  2. National Science Council of Taiwan [NSC 101-2811-B-259-001, NSC 101-2320-B-259-002-MY3]

Ask authors/readers for more resources

Endocytosis has been proposed as one of the primary mechanisms for cellular entry of cell-penetrating peptides (CPPs) and their cargoes. However, a major limitation of endocytic pathway is entrapment of the CPP-cargo in intracellular vesicles from which the cargo must escape into the cytoplasm to exert its biological activity. Here we demonstrate that a CPP tagged with an endosomolytic fusion peptide derived from the influenza virus hemagglutinin-2 (HA2) remarkably enhances the cytosolic delivery of proteins in human A549 cells. To determine the endosome-disruptive effects, recombinant DNA plasmids containing coding sequences of HA2. CPPs and red fluorescent proteins (RFPs) were constructed. The fusion proteins were purified from plasmid-transformed Escherichia coli, and their effects on protein transduction were examined using live cell imaging and flow cytometry. Our data indicate that endocytosis is the major route for cellular internalization of CPP-HA2-tagged RFP. Mechanistic studies revealed that the fusogenic HA2 peptide dramatically facilitates CPP-mediated protein entry through the release of endocytosed RFPs from endosomes into the cytoplasm. Furthermore, incorporating the HA2 fusion peptide of the CPP-HA2 fusion protein improved cytosolic uptake without causing cytotoxicity. These findings strongly suggest that the CPP-HA2 tag could be an efficient and safe carrier that overcomes endosomal entrapment of delivered therapeutic drugs. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available