4.4 Review

δ-hemolysin, an update on a membrane-interacting peptide

Journal

PEPTIDES
Volume 30, Issue 4, Pages 817-823

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.peptides.2008.12.017

Keywords

Antimicrobial; Pore; Hemolysis; Staphylococcus; Bacteria; Erythrocyte; Detergent; Curvature strain

Funding

  1. French Minister of Research
  2. Veolia

Ask authors/readers for more resources

delta-hemolysin is a hemolytic peptide produced by Staphylococcus, and it has been studied for nearly 50 years. Therefore, it has become a model in the study of peptides interacting with membranes. In this review, we report some recent findings and compare them with previous works. delta-hemolysin is a 26 amino acid peptide, somewhat hydrophobic and presenting a zero net charge. Study of its structure has shown that delta-hemolysin is alpha-helical and amphipathic, such as many antimicrobial peptides (e.g. magainin and melittin). However, delta-hemolysin had not displayed any reported antimicrobial activity until a recent publication showed its high potency against Legionella. Its mode of action is based on direct interaction with target membranes. in accordance with its concentration, delta-hemolysin may slightly perturb a membrane or lead to cell lysis. Peptide charge plays an important role in its interaction with membranes, as is shown in the study of peptide variants. Some positively charged variants become highly hemolytic and even active against Escherichia coli and Staphylococcus aureus. Finally, it has recently been demonstrated that peptide preferentially binds to lipid-disordered domains. It has been postulated that as a result, enrichment in lipid-ordered domains might increase peptide concentration in lipid-disordered domains and thereby improve its activity. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available