4.4 Article

Human vasoactive hormone adrenomedullin and its binding protein rescue experimental animals from shock

Journal

PEPTIDES
Volume 29, Issue 7, Pages 1223-1230

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.peptides.2008.02.021

Keywords

hemorrhage; adrenomedullin; adrenomedullin binding protein-1; survival

Funding

  1. NHLBI NIH HHS [R01 HL076179, R01 HL076179-04] Funding Source: Medline

Ask authors/readers for more resources

We recently discovered that vascular responsiveness to adrenomedullin (AM), a vasoactive hormone, decreases after hemorrhage, which is markedly improved by the addition of its binding protein AMBP-1. One obstacle hampering the development of AM/AMBP-1 as resuscitation agents in trauma victims is the potential immunogenicity of rat proteins in humans. Although less potent than rat AM, human AM has been shown to increase organ perfusion in rats. We therefore hypothesized that administration of human AM/AMBP-1 improves organ function and survival after severe blood loss in rats. To test this, male Sprague-Dawley rats were bled to and maintained at an MAP of 40 mmHg for 90 min. They were then resuscitated with an equal volume of shed blood in the form of Ringer's lactate (i.e., low-volume resuscitation) over 60 min. At 15 min after the beginning of resuscitation, human AM/AMBP-1 (12/40 or 48/160 mu g/kg BW) were administered intravenously over 45 min. Various pathophysiological parameters were measured 4 h after resuscitation. In additional groups of animals, a 12-day survival study was conducted. Our result showed that tissue injury as evidenced by increased levels of transaminases, lactate, and creatinine, was present at 4 h after hemorrhage and resuscitation. Moreover, pro-inflammatory cytokines TNF-alpha and IL-6 were also significantly elevated. Administration of AM/AMBP-1 markedly attenuated tissue injury, reduced cytokine levels, and improved the survival rate from 29 (vehicle) to 62% (low-dose) or 70% (high-dose). However, neither human AM alone nor human AMBP-1 alone prevented the significant increase in ALT, AST, lactate and creatinine at 4 h after the completion of hemorrhage and resuscitation. Moreover, the half-life of human AM and human AMBP-1 in rats was 35.8 min and 1.68 h, respectively. Thus, administration of human AM/AMBP-1 may be a useful approach for attenuating organ injury, and reducing mortality after hemorrhagic shock. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available