4.1 Article

Peak-Power Estimation Equations in 12-to 16-Year-Old Children: Comparing Linear with Allometric Models

Journal

PEDIATRIC EXERCISE SCIENCE
Volume 25, Issue 3, Pages 385-393

Publisher

HUMAN KINETICS PUBL INC
DOI: 10.1123/pes.25.3.385

Keywords

-

Ask authors/readers for more resources

This study examined the efficacy of peak-power estimation equations in children using force platform data and determined whether allometric modeling offers a sounder alternative to estimating peak power in pediatric samples. Ninety one boys and girls aged 12-16 years performed 3 countermovement jumps (CMJ) on a force platform. Estimated peak power (PPest) was determined using the Harman et al., Sayers SJ, Sayers CMJ, and Canavan and Vescovi equations. All 4 equations were associated with actual peak power (r = 0.893-0.909, all p < .01). There were significant differences between PPest using the Harman et al., Sayers SJ, and Sayers CMJ equations (p < .05) and actual peak power (PPactual). ANCOVA also indicated sex and age effect for PPactual (p < .01). Following a random two-thirds to one-third split of participants, an additive linear model (p = .0001) predicted PPactual (adjusted R-2 = .866) from body mass and CMJ height in the two-thirds split (n = 60). An allometric model using CMJ height, body mass, and age was then developed with this sample, which predicted 88.8% of the variance in PPactual (p < .0001, adjusted R-2 = .888). The regression equations were cross-validated using the one-third split sample (11 = 31), evidencing a significant positive relationship (r = .910, p = .001) and no significant difference (p = .151) between PPactual and PPest using this equation. The allometric and linear models determined from this study provide accurate models to estimate peak power in children.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available