4.4 Article

Heat Transfer and Entropy Generation in a Porous Square Enclosure in Presence of an Adiabatic Block

Journal

TRANSPORT IN POROUS MEDIA
Volume 111, Issue 2, Pages 305-329

Publisher

SPRINGER
DOI: 10.1007/s11242-015-0595-5

Keywords

Natural convection; Adiabatic block; Heat transfer enhancement; Entropy generation

Ask authors/readers for more resources

The present work investigates the thermal aspects of a differentially heated porous square enclosure in the presence of an adiabatic block of different block sizes utilizing Darcy-Rayleigh number in the range of 1-10,000 with Darcy number 10(-2)-10(-6). Heatlines and Nusselt number, streamlines, and entropy generation are used for the analysis of heat transfer, flow circulation, and irreversibility production in the enclosure. The study reveals that the presence of an adiabatic block affects the heat transfer process severely, and three different zones of heat transfer are identified. These are namely the zone of heat transfer augmentation, the zone of heat transfer augmentation along with entropy generation reduction, and the zone of both heat transfer and entropy generation reduction. It is also found that the presence of an adiabatic block can enhance heat transfer up to a certain critical block size; thereafter, further increasing in block size reduces the heat transfer rate. An optimal block size where the heat transfer enhancement is maximum is observed to be smaller than the critical block size. The study demonstrates the analyses of heat transfer and entropy generation for a better thermal design of a system. This study is also extended for higher Prandtl number fluids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available