4.7 Article

Toward breast cancer diagnosis based on automated segmentation of masses in mammograms

Journal

PATTERN RECOGNITION
Volume 42, Issue 6, Pages 1138-1148

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.patcog.2008.08.006

Keywords

Breast cancer; Breast masses; Mammography; Image analysis

Ask authors/readers for more resources

This work explores the use of characterization features extracted based on breast-mass contours obtained by automated segmentation methods, for the classification of masses in mammograms according to their diagnosis (benign or malignant). Two sets of mass contours were obtained via two segmentation methods (a dynamic-programming-based method and a constrained region-growing method), and simplified versions of these contours (modeling the contours as ellipses) were employed to extract a set of six features designed for characterization of mass margins (contrast between foreground region and background region, coefficient of variation of edge strength, two measures of the fuzziness of mass margins, a measure of spiculation based on relative gradient orientation, and a measure of spiculation based on edge-signature information). Three popular classifiers (Bayesian classifier, Fisher's linear discriminant, and a support vector machine) were then used to predict the diagnosis of a set of 349 masses based on each of said features and some combinations of these. The systems (each system consists of a segmentation method, a featureset, and a classifier) were compared with each other in terms of their performance on the diagnosis of the set of breast masses. It was found that, although there was a percent difference of about 14% in the average segmentation quality between methods, this was translated into an average percent difference of only 4% in the classification performance. It was also observed that the spiculation feature based on edge-signature information was distinctly better than the rest of the features, although it is not very robust to changes in the quality of the segmentation. All systems were more efficient in predicting the diagnosis of benign masses than that of the malignant masses, resulting in low sensitivity and high specificity values (e.g. 0.6 and 0.8, respectively) since the positive class in the classification experiments is the set of malignant masses. It was concluded that features extracted from automated contours can contribute to the diagnosis of breast masses in screening programs by correctly identifying a majority of benign masses. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available