4.5 Article

Validation of a Next-Generation-Sequencing Cancer Panel for Use in the Clinical Laboratory

Journal

ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE
Volume 139, Issue 4, Pages 508-517

Publisher

COLL AMER PATHOLOGISTS
DOI: 10.5858/arpa.2013-0710-OA

Keywords

-

Funding

  1. Thomas Jefferson University Hospital, the Division of Genomic Pathology, the Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University
  2. Pennsylvania Department of Health

Ask authors/readers for more resources

Context.-Next-generation sequencing allows for high-throughput processing and sensitive variant detection in multiple genes from small samples. For many diseases, including cancer, a comprehensive mutational profile of a targeted list of genes can be used to simultaneously inform patient care, establish eligibility for ongoing clinical trials, and further research. Objective.-To validate a pan-cancer, next-generation-sequencing assay for use in the clinical laboratory. Design.-DNA was extracted from 68 clinical specimens (formalin-fixed, paraffin-embedded; fine-needle aspirates; peripheral blood; or bone marrow) and 5 normal controls. Sixty-four DNA samples (94%; 64 of 68) were successfully processed with the TruSeq Amplicon Cancer Panel (Illumina Inc, San Diego, California) and sequenced in 4 sequencing runs. The data were analyzed at 4 different filter settings for sequencing coverage and variant frequency cutoff. Results.-Libraries created from 40 specimens could be successfully sequenced in a single run and still yield sufficient coverage for robust data analysis of individual samples. Sensitivity for mutation detection down to 5% was demonstrated using dilutions of clinical specimens and control samples. The test was highly repeatable and reproducible and showed 100% concordance with clinically validated Sanger sequencing results. Comparison to an alternate next-generation sequencing technology was performed by also processing 9 of the specimens with the AmpliSeq Cancer Hotspot Panel (version 2; Life Technologies, Grand Island, New York). Thirty of the 31 (97%) TruSeq-detected variants covered by the designs of both panels were confirmed. Conclusions.-A sensitive, high-throughput, pan-cancer mutation panel for sequencing of cancer hot-spot mutations in 42 genes was validated for routine use in clinical testing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available