4.3 Article

Liquid Crystalline Dispersions of Graphene-Oxide-Based Hybrids: A Practical Approach towards the Next Generation of 3D Isotropic Architectures for Energy Storage Applications

Journal

PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
Volume 31, Issue 4, Pages 465-473

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppsc.201300254

Keywords

pseudocapacitance; spray pyrolysis; graphene oxide; liquid crystal

Funding

  1. Australian Research Council [1093952]

Ask authors/readers for more resources

We report the use of the spray pyrolysis method to design self-assembled isotropic ternary architectures made up of reduced graphene oxide (GO), functionalized multiwalled carbon nanotubes, and nickel oxide nanoparticles for cost-effective high-performance supercapacitor devices. Electrodes fabricated from this novel ternary system exhibit exceptionally high capacitance (2074 Fg(-1)) due to the highly conductive network, synergistic link between GO and carbon nanotubes and achieving high surface area monodispersed NiO decorated rGO/CNTs composite employing the liquid crystallinity of GO dispersions. To further assess the practicality of this material for supercapacitor manufacture, we assembled an asymmetric supercapacitor device incorporating activated carbon as the anode. The asymmetric supercapacitor device showed remarkable capacity retention (>96%), high energy density (23 Wh kg(-1)), and a coulombic efficiency of 99.5%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available