4.3 Article

Plasmodium knowlesi thioredoxin peroxidase 1 binds to nucleic acids and has RNA chaperone activity

Journal

PARASITOLOGY RESEARCH
Volume 113, Issue 11, Pages 3957-3962

Publisher

SPRINGER
DOI: 10.1007/s00436-014-4060-0

Keywords

Plasmodium knowlesi; Thioredoxin peroxidase 1; Nucleic acid binding; RNA chaperone

Categories

Funding

  1. Japan Society for the Promotion of Sciences [23390098]
  2. Grants-in-Aid for Scientific Research [25850199, 23390098] Funding Source: KAKEN

Ask authors/readers for more resources

Malaria parasites are under oxidative attack throughout their life cycle in human body and mosquito vector. Therefore, Plasmodium antioxidant defenses are crucial for its survival and being considered as interesting target for antimalarial drug design. Plasmodium knowlesi has emerged recently from its simian host to human in Southeast Asia and has been recognized as the fifth Plasmodium species that can cause human malaria. In this study, we cloned and characterized thioredoxin peroxidase 1 from P. knowlesi (PkTPx-1). PkTPx-1 gene was cloned, and recombinant protein was produced by heterologous overexpression in Escherichia coli. The recombinant protein was used for evaluation of enzymatic activity and polyclonal antibody production. Using the recombinant PkTPx-1 protein, its antioxidant activity was confirmed in a mixed-function oxidation assay where PkTPx-1 prevented nicking of DNA by hydroxyl radicals. PkTPx-1 was able to bind to double-strand DNA and RNA and had RNA chaperone activity in a nucleic acid melting assay indicating new function of PkTPx-1 other than antioxidant activity. Using specific polyclonal antibodies, it was indicated that PkTPx-1 is expressed in the cytoplasm of the parasite. Altogether, these results suggest that PkTPx-1 not only protects the parasite from the adverse effects of reactive oxygen species but also has RNA chaperone activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available