4.3 Article

Effects of Enteromyxum leei (Myxozoa) infection on gilthead sea bream (Sparus aurata) (Teleostei) intestinal mucus: glycoprotein profile and bacterial adhesion

Journal

PARASITOLOGY RESEARCH
Volume 112, Issue 2, Pages 567-576

Publisher

SPRINGER
DOI: 10.1007/s00436-012-3168-3

Keywords

-

Categories

Funding

  1. Spanish Ministry of Science and Innovation (MICINN) [AGL2009-13282-C02-01]
  2. Generalitat Valenciana [PROMETEO 2010/006, ISIC 2012/003]
  3. MICINN

Ask authors/readers for more resources

The intestinal myxosporean parasite Enteromyxum leei causes severe desquamative enteritis in gilthead sea bream (Sparus aurata) (Teleostei) that impairs nutrient absorption causing anorexia and cachexia. In fish, as in terrestrial vertebrates, intestinal goblet cells are responsible for the adherent mucus secretion overlying epithelial cells, which constitutes a first line of innate immune defense against offending microorganisms but serves also as substrate and nutrient source for the commensal microflora. The secreted intestinal mucus of parasitized (n = 6) and unexposed (n = 8) gilthead sea bream was isolated, concentrated, and subjected to downward gel chromatography. Carbohydrate and protein contents (via PAS and Bradford stainings), terminal glycosylation (via lectin ELISA), and Aeromonas hydrophila and Vibrio alginolyticus adhesion were analyzed for the isolated intestinal mucins. Parasitized fish, compared with unexposed fish, presented intestinal mucus mucins with a lower glycoprotein content and glycosylation degree at the anterior and middle intestine, whereas both glycoprotein content and glycosylation degree increased at the posterior intestine section, though only significantly for the total carbohydrate content. Additionally, a slight molecular size increase was detected in the mucin glycoproteins of parasitized fish. Terminal glycosylation of the mucus glycoproteins in parasitized fish pointed to an immature mucin secretion (N-acetyl-alpha-d-galactosamine increase, alpha-l-fucose, and neuraminic-acid-alpha-2-6-galactose reduction). Bacterial adhesion to large-sized mucus glycoproteins (> 2,000 kDa) of parasitized fish was significantly lower than in unexposed fish.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available