4.6 Article

Spinal Toll-like receptor signaling and nociceptive processing: Regulatory balance between TIRAP and TRIF cascades mediated by TNF and IFNβ

Journal

PAIN
Volume 154, Issue 5, Pages 733-742

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1016/j.pain.2013.01.012

Keywords

Interferon beta; Intrathecal injection; Tactile allodynia; Toll-like receptors; Tumor necrosis factor

Funding

  1. National Institutes of Health [NS16541, DA02110, T32 GM007752-31]

Ask authors/readers for more resources

Toll-like receptors (TLRs) play a pivotal role in inflammatory processes, and individual TLRs have been investigated in nociception. We examined overlapping and diverging roles of spinal TLRs and their associated adaptor proteins in nociceptive processing. Intrathecal (IT) TLR2, TLR3, or TLR4 ligands (-L) evoked persistent (7-day) tactile allodynia (TA) that was abolished in respective TLR-deficient mice. Using Tnf(-/-) mice, we found that IT TLR2 and TLR4 TA was tumor necrosis factor (TNF) dependent, whereas TLR3 was TNF-independent. In Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein (TIRAP; Tirap(-/-)) mice (downstream to TLR2 and TLR4), allodynia after IT TLR2-L and TLR4-L was abolished. Unexpectedly, in TIR-domain-containing adapter-inducing interferon-beta (Trif(lps2)) mice (downstream of TLR3 and TLR4), TLR3-L allodynia was abrogated, but intrathecal TLR4-L produced a persistent increase (>21 days) in TA. Consistent with a role for interferon (IFN) beta (downstream to TIR-domain-containing adapter-inducing IFN beta [TRIF]) in regulating recovery after IT TLR4-L, prolonged allodynia was noted in Ifnar1(-/-) mice. Further, IT IFN beta given to Trif(lps2) mice reduced TLR4 allodynia. Hence, spinal TIR domain-containing adaptor protein (TIRAP) and TRIF cascades differentially lead to robust TA by TNF-dependent and independent pathways, whereas activation of TRIF modulated processing through type I IFN receptors. Based on these results, we believe that processes leading to the activation of these spinal TLRs initiate TNF-dependent and -independent cascades, which contribute to the associated persistent pain state. In addition, TRIF pathways are able to modulate the TNF-dependent pain state through IFN beta. (C) 2013 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available