4.6 Article

Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system

Journal

PAIN
Volume 153, Issue 10, Pages 2017-2030

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.pain.2012.04.022

Keywords

C fiber; C-LTM; Nociceptive; Scn10a; tdTomato; VGSC

Funding

  1. Department of Veterans Affairs Medical Research Service and Rehabilitation Research Service

Ask authors/readers for more resources

A vast diversity of salient cues is sensed by numerous classes of primary sensory neurons, defined by specific neuropeptides, ion channels, or cytoskeletal proteins. Recent evidence has demonstrated a correlation between the expression of some of these molecular markers and transmission of signals related to distinct sensory modalities (eg, heat, cold, pressure). Voltage-gated sodium channel Na(v)1.8 has been reported to be preferentially expressed in small-diameter unmyelinated sensory afferents specialized for the detection of noxious stimuli (nociceptors), and Na(v)1.8-Cre mice have been widely used to investigate gene function in nociceptors. However, the identity of neurons in which Cre-mediated recombination occurs in these animals has not been resolved, and whether expression of Na(v)1.8 in these neurons is dynamic during development is not known, rendering interpretation of conditional knockout mouse phenotypes problematic. Here, we used genetics, immunohistochemistry, electrophysiology, and calcium imaging to precisely characterize the expression of Na(v)1.8 in the peripheral nervous system. We demonstrate that 75% of dorsal root ganglion (DRG) neurons express Na(v)1.8-Cre, including >90% of neurons expressing markers of nociceptors and, unexpectedly, a large population (similar to 40%) of neurons with myelinated A fibers. Furthermore, analysis of DRG neurons' central and peripheral projections revealed that Na(v)1.8-Cre is not restricted to nociceptors but is also expressed by at least 2 types of low-threshold mechanoreceptors essential for touch sensation, including those with C and A beta fibers. Our results indicate that Na(v)1.8 underlies electrical activity of sensory neurons subserving multiple functional modalities, and call for cautious interpretation of the phenotypes of Na(v)1.8-Cre-driven conditional knockout mice. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available