4.6 Article

High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 288, Issue 2, Pages 249-257

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2015.07.024

Keywords

Arrhythmia; Automated analysis; Human induced pluripotent stem cell-derived cardiomyocytes; QT prolongation; Microelectrode array; Field potential duration

Funding

  1. internal R&D funding from RTI International

Ask authors/readers for more resources

Microelectrode arrays (MEAs) recording extracellular field potentials of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) provide a rich data set for functional assessment of drug response. The aim of this work is the development of a method for a systematic analysis of arrhythmia using MEAs, with emphasis on the development of six parameters accounting for different types of cardiomyocyte signal irregularities. We describe a software approach to carry out such analysis automatically including generation of a heat map that enables quick visualization of arrhythmic liability of compounds. We also implemented signal processing techniques for reliable extraction of the repolarization peak for field potential duration (FPD) measurement even from recordings with low signal to noise ratios. We measured hiPS-CM's on a 48 well MEA system with 5 minute recordings at multiple time points (0.5, 1, 2 and 4 h) after drug exposure. We evaluated concentration responses for seven compounds with a combination of hERG, QT and clinical proarrhythmia properties: Verapamil, Ranolazine, Flecainide, Amiodarone, Ouabain, Cisapride, and Terfenadine. The predictive utility of MEA parameters as surrogates of these clinical effects were examined. The beat rate and FPD results exhibited good correlations with previous MEA studies in stem cell derived cardiomyocytes and clinical data. The six-parameter arrhythmia assessment exhibited excellent predictive agreement with the known arrhythmogenic potential of the tested compounds, and holds promise as a new method to predict arrhythmic liability. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available