4.6 Article

Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture

Journal

OSTEOARTHRITIS AND CARTILAGE
Volume 21, Issue 4, Pages 599-603

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.joca.2013.01.014

Keywords

Articular chondrocyte; Dedifferentiation; Gene expression

Funding

  1. OAcontrol of the research program of the BioMedical Materials institute [P2.02]
  2. Dutch Ministry of Economic Affairs, Agriculture and Innovation
  3. TeRM Smart Mix Program of the Netherlands Ministry of Economic Affairs
  4. Netherlands Ministry of Education, Culture and Science

Ask authors/readers for more resources

Objective: When primary chondrocytes are cultured in monolayer, they undergo dedifferentiation during which they lose their phenotype and their capacity to form cartilage. Dedifferentiation is an obstacle for cell therapy for cartilage degeneration. In this study, we aimed to systemically evaluate the changes in gene expression during dedifferentiation of human articular chondrocytes to identify underlying mechanisms. Methods: RNA was isolated from monolayer-cultured primary human articular chondrocytes at serial passages. Gene expression was analyzed by microarray. Based on the microarray analysis, relevant genes and pathways were identified. Their functions in chondrocyte dedifferentiation were further investigated. Results: In vitro expanded human chondrocytes showed progressive changes in gene expression. Strikingly, an overall decrease in total gene expression was detected, which was both gradual and cumulative. DNA methylation was in part responsible for the expression downregulation of a number of genes. Genes involved in many pathways such as the extracellular-signal-regulated kinase (ERK) and Bone morphogenetic protein (BMP) pathways exhibited significant changes in expression. Inhibition of ERK pathway did not show dramatic effects in counteracting dedifferentiation process. BMP-2 was able to decelerate the dedifferentiation and reinforce the maintenance of chondrocyte phenotype in monolayer culture. Conclusion: Our study not only improves our knowledge of the intricate signaling network regulating maintenance of chondrocyte phenotype, but also contributes to improved chondrocyte expansion and chondrogenic performance for cell therapy. (C) 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available