4.6 Article

Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes

Journal

OSTEOARTHRITIS AND CARTILAGE
Volume 18, Issue 10, Pages 1345-1354

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.joca.2010.07.004

Keywords

Cartilage repair; Agarose hydrogel; Infrapatellar fat pad; MSCs; Chondrocytes; Functional properties; Oxygen tension

Funding

  1. Science Foundation Ireland [08/YI5/B1336]
  2. Science Foundation Ireland (SFI) [08/YI5/B1336] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

Background: For current tissue engineering or regenerative medicine strategies, chondrocyte (CC)- or mesenchymal stem cell (MSC)-seeded constructs are typically cultured in normoxic conditions (20% oxygen). However, within the knee joint capsule a lower oxygen tension exists. Objective: The objective of this study was to investigate how CCs and infrapatellar fad pad derived MSCs will respond to a low oxygen (5%) environment in 3D agarose culture. Our hypothesis was that culture in a low oxygen environment (5%) will enhance the functional properties of cartilaginous tissues engineered using both cell sources. Experimental design: Cell-encapsulated agarose hydrogel constructs (seeded with CCs or infrapatellar fat pad (IFP) derived MSCs) were prepared and cultured in a chemically defined serum-free medium in the presence (CCs and MSCs) or absence (CCs only) of transforming growth factor-beta3 (TGF-beta 3) in normoxic (20%) or low oxygen (5%) conditions for 42 days. Constructs were assessed at days 0, 21 and 42 in terms of mechanical properties, biochemical content and histologically. Results: Low oxygen tension (5%) was observed to promote extracellular matrix (ECM) production by CCs cultured in the absence of TGF-beta 3, but was inhibitory in the presence of TGF-beta 3. In contrast, a low oxygen tension enhanced chondrogenesis of IFP constructs in the presence of TGF-beta 3, leading to superior mechanical functionality compared to CCs cultured in identical conditions. Conclusions: Extrapolating the results of this study to the in vivo setting, it would appear that joint fat pad derived MSCs may possess a superior potential to generate a functional repair tissue in low oxygen tensions. However, in the context of in vitro cartilage tissue engineering, CCs maintained in normoxic conditions in the presence of TGF-beta 3 generate the most mechanically functional tissue. (C) 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available