4.0 Article

Renal Cell Carcinomas in Vinylidene Chloride-exposed Male B6C3F1 Mice Are Characterized by Oxidative Stress and TP53 Pathway Dysregulation

Journal

TOXICOLOGIC PATHOLOGY
Volume 44, Issue 1, Pages 71-87

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0192623315610820

Keywords

renal cell carcinoma; renal tubular hyperplasia; global gene expression; microarray; vinylidene chloride; National Toxicology Program; carcinogenicity bioassay; quantitative PCR; immunohistochemistry; mutation analysis

Funding

  1. Intramural NIH HHS [Z99 ES999999] Funding Source: Medline

Ask authors/readers for more resources

Vinylidene chloride (VDC) has been widely used in the production of plastics and flame retardants. Exposure of B6C3F1 mice to VDC in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increases in renal cell hyperplasia, renal cell adenoma, and renal cell carcinomas (RCCs). Among those differentially expressed genes from controls and RCC of VDC-exposed mice, there was an overrepresentation of genes from pathways associated with chronic xenobiotic and oxidative stress as well as c-Myc overexpression and dysregulation of TP53 cell cycle checkpoint and DNA damage repair pathways in RCC. Trend analysis comparing RCC, VDC-exposed kidney, and chamber control kidney showed a conservation of pathway dysregulation in terms of overrepresentation of xenobiotic and oxidative stress, and DNA damage and cell cycle checkpoint pathways in both VDC-exposed kidney and RCC, suggesting that these mechanisms play a role in the pathogenesis of RCC in VDC-exposed mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available