4.5 Article

Diverse Reactivity of Diazatitanacyclohexenes: Coupling Reactions of 2H-Azirines Mediated by Titanium(II)

Journal

ORGANOMETALLICS
Volume 37, Issue 23, Pages 4327-4331

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.organomet.8b00522

Keywords

-

Funding

  1. National Institutes of Health [1R35GM119457, S10OD011952]
  2. Alfred P. Sloan Foundation
  3. University of Minnesota
  4. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R35GM119457] Funding Source: NIH RePORTER

Ask authors/readers for more resources

2H-Azirines are versatile coupling partners for the synthesis of N-heterocycles. Herein, we present our studies on the reactivity of Cp2Ti(BTMSA) (1; BTMSA = bis(trimethylsilyl)acetylene) with a variety of azirines. In all the cases examined, the initial organometallic products formed are diazatitanacyclohexenes, presumably formed via oxidative addition of Ti(II) into the C-N bond of the azirine to form an azatitanacyclobutene intermediate, followed by C=N insertion of a second equivalent of azirine into the Ti-C bond to form the observed products Diazatitanacyclohexene 3,..bearing phenyl substituents and derived from 2,3-diphenyl-2H-azirine, fragments to form an azabutadiene and nitrile, which is shown to be catalytic in the presence of excess 2,3-diphenyl-2H-azirine. H-substituted complex 8, derived from 3-phenyl-2H-azirine, decomposes via protonolysis of the Cp ligands. In contrast, the methyl-substituted diazatitanacyclohexene 10, derived from 2-methyl-3-phenyl-2H-azirine, is thermally robust. Attempts to trap the putative azatitanacyclobutene intermediate with an alkyne were unsuccessful, resulting instead in the formation of titanacyclopentadiene (12) from coupling of alkyne with BTMSA. Initial reactivity studies found that 10 could be protonolyzed with AcOH to form mixtures of pyrrole and aziridine products, whereas reacting 10 with MeOH results solely in the formation of 2,4-dimethyl-3,5-diphenyl-1H-pyrrole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available