4.5 Article

Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil

Journal

ORGANIC GEOCHEMISTRY
Volume 40, Issue 3, Pages 332-342

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.orggeochem.2008.12.004

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

The microbial recalcitrance of char accumulated after vegetation fires was studied using pyrogenic organic material (PyOM) with increasing degrees of charring, produced from rye grass (Lolium perenne) and pine wood (Pinus sylvestris) at 350 degrees C under oxic conditions. Solid state C-13 and N-15 nuclear magnetic resonance (NMR) spectroscopy confirmed increasing aromaticity and the formation of heterocyclic N with prolonged charring. After mixing with a mineral soil, the PyOM was aerobically incubated for 48 days at 30 degrees C. To account for the input of fresh litter after a fire event, unburnt rye grass residue was added as a co-substrate. The grass-derived PyOM showed the greatest extent of C mineralisation. After 48 days incubation, up to 3.2% of the organic C (OC) was converted to CO2. More severe thermal alteration resulted in a decrease in the total C mineralisation to 2.5% of OC. In the pine-derived PyOM, only 0.7% and 0.5% of the initial C were mineralised. The co-substrate additions did not enhance PyOM mineralisation during initial degradation. C-13 NMR spectroscopic analysis indicated structural changes during microbial degradation of the PyOM. Concomitant with a decrease in O-alkyl/alkyl-C, carboxyl/carbonyl C content increased, pointing to oxidation. Only the strongly thermally altered pine PyOM showed a reduction in aromaticity. The small C losses during the experiment indicated conversion of aryl C into other C groups. As revealed by the increase in carboxyl/carbonyl C, this conversion must have included the opening and partial oxidation of aromatic ring structures. Our study demonstrates that plant PyOM can be microbially attacked and mineralised at rates comparable to those for soil organic matter (SOM), so its role as a highly refractory SOM constituent may need re-evaluation. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available