4.5 Article

Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns

Journal

ORGANIC GEOCHEMISTRY
Volume 40, Issue 1, Pages 61-69

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.orggeochem.2008.09.006

Keywords

-

Funding

  1. Netherlands Foundation for the Advancement of Tropical Research (NWO-WOTRO) [WAN 75406]

Ask authors/readers for more resources

To reconstruct past shifts in the upper forest line (UFL) in the Northern Ecuadorian Andes we are studying the applicability of plant-specific patterns of lipids preserved in soils as proxies for past vegetation along an altitudinal transect. Longer chain length n-alkanes, (C-19-C-35) were previously found to occur in plant-specific patterns in the dominant vegetation in the area as well as in preliminary soil samples, and may serve as such a proxy. In the present study, we assessed the preservation of n-alkane patterns with depth in soils from five excavations along an altitudinal transect 3500-3860 m above sea level (m.a.s.l) in the area. We used the carbon preference index (CPI) as well as chain length distributions of n-alkanes and their most likely degradation products, n-methyl (Me) ketones, n-alcohols and n-fatty acids. Clear n-alkane patterns were found in all the soils and at all depths, while a clear relationship with the observed patterns of n-Me ketones identified them as the primary degradation product of the former. Very low average n-Me ketone/n-alkane ratio values were found, ranging from 0.03 to 0.15 at the top of the mineral soil, to 0.05-0.20 at the interface with an underlying palaeosol several thousand years old. The concurrent high CPI values indicate very limited degradation of n-alkanes with depth. Except for C-33, the shifts in n-Me ketone/n-alkane values were similar for all chain lengths investigated, signifying an absence of preferential degradation of individual n-alkanes. With one exception, all the soils showed a similar increase in n-Me ketone/n-alkane values with depth, indicating that the degradation rates were not influenced by altitude. This means that, even if the total concentration of n-alkanes decreases over time, the characteristic pattern remains intact, conserving their potential as a biomarker for past vegetation reconstruction in the area, as well as for investigation of degradation processes of soil organic carbon. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available