4.6 Article

Energy level alignment in PCDTBT:PC70BM solar cells: Solution processed NiOx for improved hole collection and efficiency

Journal

ORGANIC ELECTRONICS
Volume 13, Issue 5, Pages 744-749

Publisher

ELSEVIER
DOI: 10.1016/j.orgel.2012.01.022

Keywords

Electronic structure; Photoemission spectroscopy; PCDTBT; Blend; Interface dipole; NiOx

Funding

  1. Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center [DE-SC0001084]
  2. NSF [DMR-1005892]
  3. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

Solution-based NiOx outperforms PEDOT:PSS in device performance and stability when used as a hole-collection layer in bulk-heterojunction (BHJ) solar cells formed with poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole) (PCDTBT) and PC70BM. The origin of the enhancement is clarified by studying the interfacial energy level alignment between PCDTBT or the 1: 4 blended heterojunctions and PEDOT: PSS or NiOx using ultraviolet and inverse photoemission spectroscopies. The 1.6 eV electronic gap of PEDOT: PSS and energy level alignment with the BHJ result in poor hole selectivity of PEDOT:PSS and allows electron recombination at the PEDOT: PSS/BHJ interface. Conversely, the large band gap (3.7 eV) of NiOx and interfacial dipole (>= 0.6 eV) with the organic active layer leads to a hole-selective interface. This interfacial dipole yields enhanced electron blocking properties by increasing the barrier to electron injection. The presence of such a strong dipole is predicted to further promote hole collection from the organic layer into the oxide, resulting in increased fill factor and short circuit current. An overall decrease in recombination is manifested in an increase in open circuit voltage and power conversion efficiency of the device on NiOx versus PEDOT: PSS interlayers. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available