4.6 Article

The impact of self-assembled monolayer thickness in hybrid gate dielectrics for organic thin-film transistors

Journal

ORGANIC ELECTRONICS
Volume 10, Issue 8, Pages 1442-1447

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.orgel.2009.08.006

Keywords

Self-assembled monolayer; Hybrid gate dielectrics; Organic thin film-transistor

Funding

  1. Deutsche Forschungsgemeinschaft [DFG-HA 2952/2]

Ask authors/readers for more resources

We have investigated the electrical characteristics of hybrid dielectrics with a thickness of 6 nm or less that are composed of a plasma-grown aluminum oxide (AlOx) layer and a self-assembled monolayer (SAM) of an aliphatic phosphonic acid. The impact of the quality of the AlOx layer on the insulating properties of the double-layer dielectrics was assessed by comparing two different oxidation procedures, and the influence of the thickness of the organic SAM was evaluated by employing molecules with five different chain lengths. In order to decouple the relative contributions of the oxide and the SAM to the performance of the double-layer dielectrics we have also performed cyclic voltammetry measurements on indium tin oxide (ITO)/SAM devices without AlOx layer. Finally, we have evaluated how the quality of the AlOx layer and the thickness of the SAM affect the performance of low-voltage organic thin-film transistors (TFTs) that employ the thin AlOx/SAM dielectrics as the gate dielectric. The results confirm the important role of the SAM in determining the breakdown voltage, in limiting the current density, and in compensating the somewhat lower quality of AlOx layers produced under mild plasma conditions. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available