4.6 Article

Effects of fullerene solubility on the crystallization of poly(3-hexylthiophene) and performance of photovoltaic devices

Journal

ORGANIC ELECTRONICS
Volume 10, Issue 7, Pages 1334-1344

Publisher

ELSEVIER
DOI: 10.1016/j.orgel.2009.07.016

Keywords

Polymer solar cells; Fullerene; Solubility; Poly(3-hexylthiophene); Crystallinity

Funding

  1. National Natural Science Foundation of China [20604029, 20874100]
  2. Fund for Creative Research Groups [50621302]

Ask authors/readers for more resources

The substantial crystallization suppression of poly(3-hexylthiophene) (P3HT) in the untreated P3HT:C60 composite film prepared from o-dichlorobenzene (ODCB) solution has been revealed. Besides, the effective conjugation length of P3HT in this composite has been nearly maintained to that in the solution. The different crystallization behaviors of P3HT in its composites with C60 and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM) are mainly attributed to the relative solubility of C60 and PCBM with respect to P3HT in ODCB. The solution to overcome this disadvantage of chain conformation and crystallinity of P3HT in the composite with C60 is thus proposed and finalized by resorting to the addition of low volatile solvent with much higher solubility of C60 than P3HT into the main solvent used, so as P3HT can crystallize before C60 forms crystallites in the solution. The feasibility of this approach has been proven by the improved efficiency of devices based on composites of P3HT and the low cost C60 without resorting to post-treatments. Our results demonstrated in this study could further benefit development of new electron acceptor materials, particularly based on fullerenes and their derivatives, by considering the role of the new materials in determining the crystallization of the other components involved in the composite film. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available