4.6 Article

PEGylated meso-arylporpholactone metal complexes as optical cyanide sensors in water

Journal

ORGANIC & BIOMOLECULAR CHEMISTRY
Volume 12, Issue 23, Pages 3991-4001

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ob00697f

Keywords

-

Funding

  1. National Science Foundation [CHE-0517782, CHE-1058846, CMMI-0730826]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1014926] Funding Source: National Science Foundation
  4. Division Of Chemistry
  5. Direct For Mathematical & Physical Scien [1058846] Funding Source: National Science Foundation

Ask authors/readers for more resources

The colorimetric cyanide sensing ability of free base porpholactone, a pyrrole-modified porphyrin in which a porphyrin beta,beta'-double bond was replaced by a lactone functionality, and its zinc(II), platinum(II), and gallium(III) complexes in aqueous solution are reported. Water-solubility of the parent meso-penta-fluorophenyl-derivatized porphyrinoids was assured by PEGylation of the p-aryl positions using a nucleophilic aromatic substitution reaction with thiol-terminated PEG chains. A central metal-dependent sensing mechanism was revealed: While the CN- adds to the zinc(II) complex as an axial ligand, resulting in a minor response in its UV-vis spectrum, it undergoes a nucleophilic addition to the lactone moiety in the platinum(II) and gallium(III) complexes, leading to a much more prominent optical response. Nonetheless, these chemosensors are less sensitive than many other sensors reported previously, with detection limits at pH 7 for the zinc, gallium, and platinum complexes of 2 mM (50 ppm), 240 mu M (6 ppm), and 4 mM (100 ppm), respectively. The gallium(III) complex is weakly fluorescent (phi = 0.8%) and cyanide addition leads to fluorescence intensity quenching; the cyanide adduct responds with a fluorescence switch-on response but the signal is weak (phi < 10 (2)%). Lastly, we report on the fabrication of a unique optical cyanide-sensing membrane. The PEGylated gallium-complex was incorporated into a Nafion (R) membrane (on a PTFE carrier film). It was shown to be stable over extended periods of time and exhibiting a reversible and selective response within minutes to cyanide, with a 5 mM (130 ppm) detection limit. This largely fundamental study on the ability to utilize the once rare but now readily available class of pyrrole-modified porphyrins as chemosensors highlights the multiple principle ways this chromophore platform can be modified and utilized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available