4.6 Article

Dual-targeting conjugates designed to improve the efficacy of radiolabeled peptides

Journal

ORGANIC & BIOMOLECULAR CHEMISTRY
Volume 10, Issue 37, Pages 7594-7602

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ob26127h

Keywords

-

Ask authors/readers for more resources

Radiolabeled regulatory peptides are useful tools in nuclear medicine for the diagnosis (imaging) and therapy of cancer. The specificity of the peptides towards GPC receptors, which are overexpressed by cancer cells, and their favorable pharmacokinetic profile make them ideal vectors to transport conjugated radionuclides to tumors and metastases. However, after internalization of the radiopeptide into cancer cells and tumors, a rapid washout of a substantial fraction of the delivered radioactivity is often observed. This phenomenon may represent a limitation of radiopeptides for clinical applications. Here, we report the synthesis, radiolabeling, stability, and in vitro evaluation of a novel, dual-targeting peptide radioconjugate designed to enhance the cellular retention of radioactivity. The described trifunctional conjugate is comprised of a Tc-99m SPECT reporter probe, a cell membrane receptor-specific peptide, and a second targeting entity directed towards mitochondria. While the specificity of the first generation of dual-targeting conjugates towards its extracellular target was demonstrated, intracellular targeting could not be confirmed probably due to non-specific binding or hindered passage through the membrane of the organelle. The work presented describes a novel approach with potential to improve the efficacy of radiopharmaceuticals by enhancing the intracellular retention of radioactivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available