4.6 Article

Thermodynamic origins of selective binding affinity between p-sulfonatocalix[4,5]arenes with biguanidiniums

Journal

ORGANIC & BIOMOLECULAR CHEMISTRY
Volume 10, Issue 8, Pages 1527-1536

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ob06313a

Keywords

-

Funding

  1. 973 Program [2011CB932502]
  2. NNSFC [20932004, 21172119]

Ask authors/readers for more resources

The binding geometries, abilities and thermodynamic parameters for the intermolecular complexation of two water-soluble calixarenes, p-sulfonatocalix[4]arene (SC4A) and p-sulfonatocalix[5]arene (SC5A), with biguanidinium guests, metformin (MFM) and phenformin (PFM), were investigated by H-1 and 2D NMR spectroscopy, X-ray crystallography, and isothermal titration calorimetry (ITC). The obtained results show that biguanidinium guests are captured by calixarenes with the alkyl or aromatic portion immersed into the cavities and the guanidinium portion fixed at the upper-rims. At both acidic and neutral conditions, SC4A always presents stronger binding affinities to biguanidinium guests than SC5A. Moreover, SC4A prefers to include MFM rather than PFM. As a result, the binding selectivity of MFM is up to 44.7 times for the SC4A/SC5A hosts. The intrinsic relationship between binding structures and selectivities were comprehensively analyzed and discussed from the viewpoint of thermodynamics. Finally, the ITC measurements were further performed in phosphate buffer instead of aqueous solution, to examine the buffer effects, counterion effect, and the differences between thermodynamic and apparent association constants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available