4.5 Article

Robust portfolio selection based on a joint ellipsoidal uncertainty set

Journal

OPTIMIZATION METHODS & SOFTWARE
Volume 26, Issue 1, Pages 89-104

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10556780903334682

Keywords

robust optimization; mean-variance portfolio selection; maximum risk-adjusted return portfolio selection; cone programming; linear regression

Funding

  1. NSERC

Ask authors/readers for more resources

'Separable' uncertainty sets have been widely used in robust portfolio selection models (e.g. see [E. Erdoan, D. Goldfarb, and G. Iyengar, Robust portfolio management, manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York, 2004; D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28 (2003), pp.1-38; R.H. Tutuncu and M. Koenig, Robust asset allocation, Ann. Oper. Res. 132 (2004), pp.157-187]). For these uncertainty sets, each type of uncertain parameter (e.g. mean and covariance) has its own uncertainty set. As addressed in [Z. Lu, A new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics, Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-009-0271-z], these 'separable' uncertainty sets typically share two common properties: (1) their actual confidence level, namely, the probability of uncertain parameters falling within the uncertainty set, is unknown, and it can be much higher than the desired one; and (2) they are fully or partially box-type. The associated consequences are that the resulting robust portfolios can be too conservative, and moreover, they are usually highly non-diversified, as observed in the computational experiments conducted in [Z. Lu, A new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics, Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-009-0271-Z; R.H.Tutuncu and M. Koenig, Robust asset allocation, Ann. Oper. Res. 132 (2004), pp.157-187]. To combat these drawbacks, we consider a factor model for random asset returns. For this model, we introduce a 'joint' ellipsoidal uncertainty set for the model parameters and show that it can be constructed as a confidence region associated with a statistical procedure applied to estimate the model parameters. We further show that the robust maximum risk-adjusted return (RMRAR) problem with this uncertainty set can be reformulated and solved as a cone programming problem. The computational results reported in [Z. Lu, A new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics, Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-009-0271-Z] demonstrate that the robust portfolio determined by the RMRAR model with our 'joint' uncertainty set outperforms that with Goldfarb and Iyengar's 'separable' uncertainty set proposed in the seminal paper [D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28 (2003), pp.1-38] in terms of wealth growth rate and transaction cost; moreover, our robust portfolio is fairly diversified, but Goldfarb and Iyengar's is surprisingly highly non-diversified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available