4.6 Article

Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers

Journal

OPTICS LETTERS
Volume 36, Issue 13, Pages 2432-2434

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.36.002432

Keywords

-

Categories

Ask authors/readers for more resources

We report a hybrid chalcogenide-silica photonic crystal fiber made by pressure-assisted melt-filling of molten glass. Photonic bandgap guidance is obtained at a silica core placed centrally in a hexagonal array of continuous centimeters-long chalcogenide strands with diameters of 1.45 mu m. In the passbands of the cladding, when the transmission through the silica core is very weak, the chalcogenide strands light up with distinct modal patterns corresponding to Mie resonances. In the spectral regions between these passbands, strong bandgap guidance is observed, where the silica core transmission loss is 60 dB/cm lower. The pressure-assisted fabrication approach opens up new ways of integrating sophisticated glass-based devices into optical fiber circuitry with potential applications in supercontinuum generation, magneto-optics, wavelength selective devices, and rare-earth-doped amplifiers with high gain per unit length. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available