4.6 Article

Soliton explosion control by higher-order effects

Journal

OPTICS LETTERS
Volume 35, Issue 11, Pages 1771-1773

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.35.001771

Keywords

-

Categories

Ask authors/readers for more resources

We numerically study the impact of self-frequency shift, self-steepening, and third-order dispersion on the erupting soliton solutions of the quintic complex Ginzburg-Landau equation. We find that the pulse explosions can be completely eliminated if these higher-order effects are properly conjugated two by two. In particular, we observe that positive third-order dispersion can compensate the self-frequency shift effect, whereas negative third-order dispersion can compensate the self-steepening effect. A stable propagation of a fixed-shape pulse is found under the simultaneous presence of the three higher-order effects. (C) 2010 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available