4.5 Article

Effect of hypertension on the resting-state functional connectivity in patients with Alzheimer's disease (AD)

Journal

ARCHIVES OF GERONTOLOGY AND GERIATRICS
Volume 60, Issue 1, Pages 210-216

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.archger.2014.09.012

Keywords

Alzheimer's disease; Hypertension; Resting-state functional MRI; Functional connectivity

Funding

  1. Faculty Research Grant of Yonsei University College of Medicine [6-2011-0155]

Ask authors/readers for more resources

Background/Objectives: Although hypertension is known to be a risk factor for AD, the effects of hypertension on brain function in AD patients are not well understood. We investigated alterations in resting-state functional connectivity according to the presence of hypertension in AD patients by using a method of correlation analysis based on a seed region in the posterior cingulate cortex (PCC). We also determined whether differences in resting-state connectivity were associated with gray matter atrophy. Methods: Thirty-seven AD patients (18 patients with hypertension and 19 patients without hypertension) underwent the resting-state functional magnetic resonance imaging. We obtained the PCC maps by a temporal correlation method, to identify alterations in the functional connectivity of the PCC in hypertensive group relative to non-hypertensive group. Voxel-based morphometry analysis was also applied to adjust the confounding effect of gray matter atrophy. Results: We detected a decreased connectivity to the PCC in the regions of subgenual anterior cingulated cortex (ACC) in hypertensive group relative to non-hypertensive group. However, we observed a pattern of increased connectivity between the PCC and the left inferior parietal cortex in hypertensive group. After correction for gray matter atrophy, all detected regions still remained significant. Conclusions: Altered connectivity in AD patients with hypertension suggests the possibility that hypertension impairs resting-state functional connectivity of the AD brain, inducing a compensational process outside the impaired networks or disequilibrium in brain connectivity. This finding may account for an additional contribution of hypertension to the pathophysiology of AD. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available