4.6 Article

Circular dichroism in planar nonchiral plasmonic metamaterials

Journal

OPTICS LETTERS
Volume 34, Issue 5, Pages 632-634

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.34.000632

Keywords

-

Categories

Ask authors/readers for more resources

It is shown theoretically that a nonchiral, two-dimensional array of metallic spheres exhibits optical activity as manifested in calculations of circular dichroism. The metallic spheres occupy the sites of a rectangular lattice, and for off-normal incidence they show a strong circular-dichroisrn effect around the surface-plasmon frequencies. The optical activity is a result of the rectangular symmetry of the lattice, which gives rise to different polarization modes of the crystal along the two orthogonal primitive lattice vectors. These two polarization modes result in a net polar vector that forms a chiral triad with the wave vector and the vector normal to the plane of spheres. The formation of this chiral triad is responsible for the observed circular dichroism, although the structure itself is intrinsically nonchiral. (C) 2009 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available