4.6 Article

Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode

Journal

OPTICS EXPRESS
Volume 22, Issue 21, Pages A1400-A1411

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.22.0A1400

Keywords

-

Categories

Funding

  1. National Basic Research Program of China [2012CB922000]

Ask authors/readers for more resources

A metallic hole-array structure was inserted into a tandem solar cell structure as an intermediate electrode, which allows a further fabrication of a novel and efficient hybrid organic-inorganic tandem solar cell. The inserted hole-array layer reflects the higher-energy photons back to the top cell, and transmits lower-energy photons to the bottom cell via the extraordinary optical transmission (EOT) effect. In this case light absorption in both top and bottom subcells can be simultaneously enhanced via both structural and material optimizations. Importantly, this new design could remove the constraints of requiring lattice-matching and current-matching between the used two cascaded subcells in a conventional tandem cell structure, and therefore, the tunnel junction could be no longer required. As an example, a novel PCBM/CIGS tandem cell was designed and investigated. A systematic modeling study was made on the structural parameter tuning, with the period ranging from a few hundreds nanometers to over one micrometer. Surface plasmon polaritons, magnetic plasmon polaritons, localized surface plasmons, and optical waveguide modes were found to participate in the EOT and the light absorption enhancement. Impressively, more than 40% integrated power enhancement can be achieved in a variable structural parameter range. (C) 2014 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available