4.6 Article

Forward and backward unidirectional scattering from plasmonic coupled wires

Journal

OPTICS EXPRESS
Volume 21, Issue 25, Pages 31138-31154

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.21.031138

Keywords

-

Categories

Funding

  1. Air Force Office of Scientific Research [FA9550-09-1-0562]

Ask authors/readers for more resources

We analyze the resonant electromagnetic response of subwavelength plasmonic dimers formed by two silver strips separated by a thin dielectric spacer and embedded in a uniform dielectric media. We demonstrate that the off-resonant electric and resonant, geometric shape-leveraged, magnetic polarizabilities of the dimer element can be designed to have close absolute values in a certain spectral range, resulting in a predominantly unidirectional scattering of the incident field due to pronounced magneto-electric interference. Switching between forward and backward directionality can be achieved with a single element by changing the excitation wavelength, with the scattering direction defined by the relative phases of the polarizabilities. We extend the analysis to some periodic configurations, including the specific case of a perforated metal film, and discuss the differences between the observed unidirectional scattering and the extraordinary transmission effect. The unidirectional response can be preserved and enhanced with periodic arrays of dimers and can find applications in nanoantenna devices, integrated optic circuits, sensors with nanoparticles, photovoltaic systems, or perfect absorbers; while the option of switching between forward and backward unidirectional scattering may create interesting possibilities for manipulating optical pressure forces. (C) 2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available