4.6 Article

Photostimulated control of laser transmission through photoresponsive cholesteric liquid crystals

Journal

OPTICS EXPRESS
Volume 21, Issue 2, Pages 1645-1655

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.21.001645

Keywords

-

Categories

Funding

  1. Air Force Office of Scientific Research
  2. Materials and Manufacturing Directorate of the Air Force Research Laboratory
  3. DoD SBIR program

Ask authors/readers for more resources

Cholesteric liquid crystals (CLCs) are selectively reflective optical materials, the color of which can be tuned via electrical, thermal, mechanical, or optical stimuli. In this work, we show that self-regulation of the transmission of a circularly polarized incident beam can occur upon phototuning of the selective reflection peak of a photosensitive CLC mixture towards the pump wavelength. The autonomous behavior occurs as the red-shifting selective reflection peak approaches the wavelength of the incident laser light. Once the red-edge of the CLC bandgap and incident laser wavelength overlap, the rate of tuning dramatically slows. The dwell time (i.e., duration of the overlap of stimulus wavelength with CLC bandgap) is shown to depend on the radiation wavelength, polarization, and intensity. Necessary conditions for substantial dwell time of the CLC reflection peak at the pump beam wavelength include irradiation with low intensity light (similar to 1mW/cm(2)) and the utilization of circularly polarized light of the same handedness as the helical structure within the CLC. Monitoring the optical properties in both reflection and transmission geometries elucidates differences associated with attenuation of the light through the thickness of the CLC film. (C)2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available