4.6 Article

Reconfigurable plasmonic devices using liquid metals

Journal

OPTICS EXPRESS
Volume 20, Issue 11, Pages 12119-12126

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.20.012119

Keywords

-

Categories

Funding

  1. National Science Foundation MRSEC [DMR-1121252]

Ask authors/readers for more resources

We experimentally demonstrate an approach to create reconfigurable plasmonic devices in which the geometry of the device can be changed dramatically. The specific embodiment we present utilizes eutectic gallium indium (EGaIn), a metal that is liquid at room temperature, which is injected into or withdrawn from channels encapsulated by a polydimethylsiloxane (PDMS) bullseye mold fabricated on a gold coated substrate. Using terahertz (THz) time-domain spectroscopy, we measure the enhanced transmission properties of a single subwavelength aperture surrounded by differing numbers of concentric annular EGaIn rings. The results obtained from different device geometries, with either a single or multiple rings, are performed using a single device, demonstrating true reconfigurability. We explain the properties of the observed temporal waveforms using a simple time-domain model. This represents, we believe, a first step in developing more complex reconfigurable plasmonic devices. (C) 2012 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available