4.6 Article

Switching energy limits of waveguide-coupled graphene-on-graphene optical modulators

Journal

OPTICS EXPRESS
Volume 20, Issue 18, Pages 20330-20341

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.20.020330

Keywords

-

Categories

Ask authors/readers for more resources

The fundamental switching energy limitations for waveguide coupled graphene-on-graphene optical modulators are described. The minimum energy is calculated under the constraints of fixed insertion loss and extinction ratio. Analytical relations for the switching energy both for realistic structures and in the quantum capacitance limit are derived and compared with numerical simulations. The results show that sub-femtojoule per bit switching energies and peak-to-peak voltages less than 0.1 V are achievable in graphene-on-graphene optical modulators using the constraint of 3 dB extinction ratio and 3 dB insertion loss. The quantum-capacitance limited switching energy for a single TE-mode modulator geometry is found to be < 0.5 fJ/bit at lambda = 1.55 mu m, and the dependences of the minimum energy on the waveguide geometry, wavelength, and graphene location are investigated. The low switching energy is a result of the very strong optical absorption in graphene, and the extremely-small operating voltages needed as the device approaches the quantum capacitance regime. (C) 2012 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available