4.6 Article

Cascaded collective decay in regular arrays of cold trapped atoms

Journal

OPTICS EXPRESS
Volume 20, Issue 28, Pages 29634-29645

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.20.029634

Keywords

-

Categories

Funding

  1. DARPA through the QUASAR project

Ask authors/readers for more resources

Energy and lifetime of collective optical excitations in regular arrays of atoms and molecules are significantly influenced by dipole-dipole interaction. While the dynamics of closely positioned atoms can be approximated well by the Dicke superradiance model, the situation of finite regular configurations is hard to access analytically. Most treatments use an exciton based description limited to the lowest excitation manifold. We present a general approach studying the complete decay cascade of a finite regular array of atoms from the fully inverted to the ground state. We explicitly calculate all energy shifts and decay rates for two generic cases of a three-atom linear chain and an equilateral triangle. In numerical calculations we show that despite fairly weak dipole-dipole interactions, collective vacuum coupling allows for superradiant emission as well as subradiant states in larger arrays through multi-particle interference. This induces extra dephasing and modified decay as important limitations for Ramsey experiments in lattice atomic clock setups as well as for the gain and frequency stability of superradiant lasers. (C) 2012 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available