4.6 Article

Vertical junction silicon microdisk modulators and switches

Journal

OPTICS EXPRESS
Volume 19, Issue 22, Pages 21989-22003

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.19.021989

Keywords

-

Categories

Funding

  1. Sandia National Laboratories Laboratory Directed Research and Development Effort
  2. Microsystems Technology Office of the Defense Advanced Research Projects Agency (DARPA)
  3. United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

Vertical junction resonant microdisk modulators and switches have been demonstrated with exceptionally low power consumption, low-voltage operation, high-speed, and compact size. This paper reviews the progress of vertical junction microdisk modulators, provides detailed design data, and compares vertical junction performance to lateral junction performance. The use of a vertical junction maximizes the overlap of the depletion region with the optical mode thereby minimizing both the drive voltage and power consumption of a depletion-mode modulator. Further, the vertical junction enables contact to be made from the interior of the resonator and therein a hard outer wall to be formed that minimizes radiation in small diameter resonators, further reducing the capacitance and drive power of the modulator. Initial simple vertical junction modulators using depletion-mode operation demonstrated the first sub-100fJ/bit silicon modulators. With more intricate doping schemes and through the use of AC-coupled drive signals, 3.5 mu m diameter vertical junction microdisk modulators have recently achieved a communications efficiency of 3fJ/bit, making these modulators the smallest and lowest power modulators demonstrated to date, in any material system. Additionally, the demonstration was performed at 12.5Gb/s, required a peak-to-peak signal level of only 1V, and achieved bit-error-rates below 10(-12) without requiring signal pre-emphasis. As an additional benefit to the use of interior contacts, higher-order active filters can be constructed from multiple vertical-junction modulators without interference of the electrodes. Doing so, we demonstrated second-order active high-speed bandpass switches with similar to 2.5ns switching speeds, and power penalties of only 0.4dB. Through the use of vertical junctions in resonant modulators, we have achieved the lowest power consumption, lowest voltage, and smallest silicon modulators demonstrated to date. 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available