4.6 Article

Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links

Journal

OPTICS EXPRESS
Volume 19, Issue 26, Pages 790-798

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.19.00B790

Keywords

-

Categories

Funding

  1. CISCO Systems
  2. EURO-FOS Network of Excellence
  3. European Commission

Ask authors/readers for more resources

Link design for optical communication systems requires accurate modeling of nonlinear propagation in fibers. This topic has been widely analyzed in last decades with partial successes in special conditions, but without a comprehensive solution. Since the introduction of coherent detection with electronic signal processing the scenario completely changed because this category of systems shows better performances in links without in-line dispersion management. This change to uncompensated transmission allowed to modify the approach in the study of nonlinear fiber propagation and in recent years a series of promising analytical models have been proposed. In this paper, we present an experimental validation over different fiber types of an analytical model for nonlinear propagation over uncompensated optical transmission links. Considering an ultra-dense WDM system, we transmitted ten 120-Gb/s PM-QPSK signals over a multi-span system probing different fiber types: SSMF, PSCF and NZDSF. A good matching was found in all cases showing the potential of the analytical model for accurate performance estimation that could lead to powerful tools for link design. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available