4.6 Article

M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission

Journal

OPTICS EXPRESS
Volume 19, Issue 26, Pages 868-881

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.19.00B868

Keywords

-

Categories

Ask authors/readers for more resources

We present a new class of optical modulation formats based on the combination of m-ary pulse-position modulation (m-PPM) or m-ary frequency-shift keying (FSK) with additional polarization and/or phase modulation, which is applied on the information carrying pulses in the case of m-PPM or on the information carrying frequency carriers in the case of m-FSK. We describe the principle and implementation of this class of optical modulation formats, and formulate their theoretical receiver sensitivities in optically pre-amplified receivers. Pilot-assisted frequency-domain equalization, similar to that used in coherent optical orthogonal frequency-division multiplexing (CO-OFDM), is used for reliable channel estimation and compensation. CO-OFDM also allows m-FSK to be implemented with high spectral efficiency. As a particular format in this class, m-PPM in combination with polarization-division-multiplexed quadrature phase-shift keying (PDM-QPSK), termed as PQ-mPPM, offers superior receiver sensitivity in optically pre-amplified receivers at bit error ratios (BERs) around the thresholds of common forward-error correction codes. Record receiver sensitivities of 3.5 photons per bit (ppb) at BER = 10(-3) and 2.7 ppb at BER = 1.5 x 10(-2) are experimentally demonstrated at 2.5 Gb/s and 6.23 Gb/s using PQ-16PPM and PQ-4PPM, respectively. We further demonstrate the transmission of a 6.23-Gb/s PQ-4PPM signal over a 370-km unrepeatered ultra-large-area-fiber span with 71.7-dB total loss budget. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available