4.6 Article

Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications

Journal

OPTICS EXPRESS
Volume 19, Issue 4, Pages 3627-3636

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.19.003627

Keywords

-

Categories

Funding

  1. Baden-Wurttemberg Stiftung

Ask authors/readers for more resources

When replacing a bulk negative index material (NIM) with two resonant surfaces that allow for surface plasmon polariton (SPP) propagation it is possible to recreate the same near-field imaging effects as with Pendry's perfect lens. We show that a metallic meander structure is perfectly suited as such a resonant surface due to the tunability of the short (SRSPP) and long range surface plasmon (LRSPP) frequencies by means of geometrical variation. Furthermore, the Fano-type pass band between the SRSPP and LRSPP frequencies of a single meander sheet retains its dominant role when being stacked. Hence, the pass band frequency position, which is determined by the meander geometry, controls also the pass band of a meander stack. When building up stacks with different periodicities the pass band shifts in frequency for each sheet in a different way. We rigorously calculate the spectra of various meander designs and show that this shift can be compensated by changing the remaining geometrical parameters of each single sheet. We also present a basic idea how high-transmission stacks with different periodicities can be created to enable energy transfer at low loss over practically arbitrary distances inside such a stack. The possibility to stack meander sheets of varying periodicity might be the key to far field superlenses since a controlled transformation of evanescent modes to traveling wave modes of higher diffraction order could be enabled. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available