4.6 Article

Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source

Journal

OPTICS EXPRESS
Volume 18, Issue 18, Pages 18519-18524

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.18.018519

Keywords

-

Categories

Funding

  1. University of Delaware

Ask authors/readers for more resources

Photoacoustic microscopy (PAM) provides high resolution images with excellent image contrast based on optical absorption. The compact size and high repetition rate of pulsed microchip lasers make them attractive sources for PAM. However, their fixed wavelength output precludes their use in spectroscopic PAM. We are developing a tunable optical source based on a microchip laser that is suitable for spectroscopic PAM. Pulses from a 6.6 kHz repetition rate Q-switched Nd:YAG microchip laser are sent through a photonic crystal fiber with a zero dispersion wavelength at 1040 nm. The highly nonlinear optical propagation produces a supercontinuum spectrum spanning 500 - 1300 nm. A tunable band pass filter selects the desired wavelength band from the supercontinuum. Our PAM system employs optical focusing and a 25 MHz spherically focused detection transducer. En-face imaging experiments were performed at seven different wavelengths from 575 to 875 nm. A simple discriminant analysis of the multiwavelength photoacoustic data produces images that clearly distinguish the different absorbing regions of ink phantoms. These results suggest the potential of this compact tunable source for spectroscopic photoacoustic microscopy. (C) 2010 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available