4.6 Article

Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling

Journal

OPTICS EXPRESS
Volume 18, Issue 9, Pages A79-A90

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.18.000A79

Keywords

-

Categories

Funding

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001088]

Ask authors/readers for more resources

Luminescent solar concentrators (LSCs) use dye molecules embedded in a flat-plate waveguide to absorb solar radiation. Ideally, the dyes re-emit the absorbed light into waveguide modes that are coupled to solar cells. But some photons are always lost, re-emitted through the face of the LSC and coupled out of the waveguide. In this work, we improve the fundamental efficiency limit of an LSC by controlling the orientation of dye molecules using a liquid crystalline host. First, we present a theoretical model for the waveguide trapping efficiency as a function of dipole orientation. Next, we demonstrate an increase in the trapping efficiency from 66% for LSCs with no dye alignment to 81% for a LSC with vertical dye alignment. Finally, we show that the enhanced trapping efficiency is preserved for geometric gains up to 30, and demonstrate that an external diffuser can alleviate weak absorption in LSCs with vertically-aligned dyes. (C) 2010 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available