4.6 Article

Optically driven micropump with a twin spiral microrotor

Journal

OPTICS EXPRESS
Volume 17, Issue 21, Pages 18525-18532

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.17.018525

Keywords

-

Categories

Funding

  1. PRESTO
  2. Japan Science and Technology Agency
  3. Japan Society for the Promotion of Science

Ask authors/readers for more resources

An optically driven micropump that employs viscous drag exerted on a spinning microrotor with left- and right-handed spiral blades on its rotational axis has been developed using two-photon microfabrication. It was demonstrated that the twin spiral microrotor provides a higher rotation speed than a single spiral microrotor. The rotation speed reached 560 rpm at a laser power of 500 mW. The twin spiral microrotor was also applied to a viscous micropump with a U-shaped microchannel. To pump fluid, the twin spiral microrotor located at the corner of the U-shaped microchannel was rotated by focusing a laser beam. The flow field inside the U-shaped microchannel was analyzed using the finite element method (FEM) based on the Navier-Stokes equation to optimize the shape of the microchannel. It was confirmed that the rotation of the twin spiral microrotor generated a unidirectional laminar flow. Finally, a tandem micropump using two twin spiral microrotors was driven by a dual optical trapping system using a spatial light modulation technique. (c) 2009 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available