4.6 Article

Increasing trap stiffness with position clamping in holographic optical tweezers

Journal

OPTICS EXPRESS
Volume 17, Issue 25, Pages 22718-22725

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.17.022718

Keywords

-

Categories

Ask authors/readers for more resources

We present a holographic optical tweezers system capable of position clamping multiple particles. Moving an optical trap in response to the trapped object's motion is a powerful technique for optical control and force measurement. We have now realised this experimentally using a Boulder Nonlinear Systems Spatial Light Modulator (SLM) with a refresh rate of 203Hz. We obtain a reduction of 44% in the variance of the bead's position, corresponding to an increase in effective trap stiffness of 77%. This reduction relies on the generation of holograms at high speed. We present software capable of calculating holograms in under 1 ms using a graphics processor unit. (C) 2009 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available