4.6 Article

Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation

Journal

OPTICS EXPRESS
Volume 17, Issue 20, Pages 17570-17581

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.17.017570

Keywords

-

Categories

Funding

  1. Australian Research Council [DP0877232]
  2. Federal Agency for Education of the Russian Federation [2.1.1/1933, 2.1.1/1880]

Ask authors/readers for more resources

In this paper, we theoretically analyze the emission of guided polaritons accompanying spontaneous recombination in a semiconductor quantum dot coupled to metallic nanowire. This study is aimed to shed light on the interaction between optically excited quantum emitters and metallic nanowaveguides beyond the validity of dipole approximation. To the best of our knowledge, this is the first time the geometry of quantum emitter and spatial inhomogeneity of the electric field constituting the fundamental polariton mode are fully taken into account. Even though we performed the analysis for disk-like quantum dot, all the conclusions are quite general and remain valid for any emitter with nanometer dimensions. Particularly, we found that the strong inhomogeneity of the electric field near the nanowire surface results in a variety of dipole-forbidden transitions in the quantum dot energy spectra. It was also unambiguously shown that there is a certain nanowire radius that gives maximum emission efficiency into the fundamental polariton mode. Since the dipole approximation breaks for nanowires with small radii and relatively big nanoemitters, the above features need to be considered in the engineering of plasmonic devices for nanophotonic networks. (C) 2009 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available