4.6 Article

Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings

Journal

OPTICS EXPRESS
Volume 16, Issue 11, Pages 7969-7975

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.16.007969

Keywords

-

Categories

Ask authors/readers for more resources

An approach of enhanced light-trapping in a thin-film silicon solar cell by adding a two-filling-factor asymmetric binary grating on it is proposed for the wavelength of near-infrared. Such a grating-on-thin-film structure forms a guided-mode resonance notch filter to couple energy diffracted from an incident wave to a leakage mode of the guided layer in the solar cell. The resonance wave coupled between two-filling-factor gratings would laterally extend the optical power and induce multiple bounces within the active layer. The resonance effect traps light in the cell enhancing its absorption probability. A dynamic light-trapping behaviour in solar cells is observed. A photon dwelling time is proposed for the first time to quantify the light-trapping effect. Moreover, the light absorption probability is also quantified. As compared the grating-on-thin-film structure with the one of planar silicon thin film, simulation results reveal that it is 3-fold enhancement in the light absorption within a spectral range of 920-1040 nm. Moreover, such an enhancement can be maintained even the incident angle of near-IR broadband light wave varies up to +/- 40 degrees. (C) 2008 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available