4.6 Article

Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot

Journal

OPTICS EXPRESS
Volume 16, Issue 24, Pages 20142-20148

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.16.020142

Keywords

-

Categories

Ask authors/readers for more resources

Recent work demonstrated light transmission through deep subwavelength slits or coupling light into waveguides with deep subwavelength dimension only in one direction. In this paper, we propose an approach to squeeze light (lambda = 1550 nm) from a dielectric waveguide into a deep subwavelength spot. Vertical confinement is achieved by efficiently coupling light from a dielectric waveguide into a 20-nm metal-dielectric-metal plasmonic waveguide. The horizontal dimension of the plasmonic waveguide is then tapered into 20 nm. Numerical simulation shows that light fed from a dielectric waveguide can be squeezed into a 21nm-by-24nm spot with efficiency 62%. (C) 2008 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available