4.6 Article

Plasmon-enhanced emission from optically-doped MOS light sources

Journal

OPTICS EXPRESS
Volume 17, Issue 1, Pages 185-192

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.17.000185

Keywords

-

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Air Force Aerospace Research OSR [FA9550-06-1-0470]

Ask authors/readers for more resources

We evaluate the spontaneous emission rate (Purcell) enhancement for optically-doped metal-dielectric-semiconductor light-emitting structures by considering the behavior of a semiclassical oscillating point dipole placed within the dielectric layer. For a Ag-SiO2-Si structure containing emitters at the center of a 20-nm-thick SiO2 layer, spontaneous emission rate enhancements of 40 to 60 can be reached in the wavelength range of 600 to 1800 nm, far away from the surface plasmon resonance; similar enhancements are also possible if Al is used instead of Ag. For dipoles contained in the thin oxide layer of a Ag-SiO2-Si-SiO2 structure, the emission exhibits strong preferential coupling to a single well-defined Si waveguide mode. This work suggests a means of designing a new class of power-efficient, high-modulation-speed, CMOS-compatible optical sources that take full advantage of the excellent electrical properties and plasmon-enhanced optical properties afforded by MOS devices. (C) 2008 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available