4.6 Article

Microlasers based on effective index confined slow light modes in photonic crystal waveguides

Journal

OPTICS EXPRESS
Volume 16, Issue 9, Pages 6331-6339

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.16.006331

Keywords

-

Categories

Ask authors/readers for more resources

We present the design, theory and experimental implementation of a low modal volume microlaser based on a line-defect 2D-photonic crystal waveguide. The lateral confinement of low-group velocity modes is controlled by the post-processing of 1 to 3 mu m wide PMMA strips on top of two dimensional photonic crystal waveguides. Modal volume around 1.3 (lambda/n)(3) can be achieved using this scheme. We use this concept to fabricate microlaser devices from an InP-based heterostructure including InAs0.65P0.35 quantum wells emitting around 1550nm and bonded onto a fused silica wafer. We observe stable, room-temperature laser operation with an effective lasing threshold around 0.5mW. (c) 2008 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available